Finding Nash equilibria by minimizing approximate exploitability with learned best responses

20 Jan 2023  ·  Carlos Martin, Tuomas Sandholm ·

There has been substantial progress on finding game-theoretic equilibria. Most of that work has focused on games with finite, discrete action spaces. However, many games involving space, time, money, and other fine-grained quantities have continuous action spaces (or are best modeled as such). We study the problem of finding an approximate Nash equilibrium of games with continuous action sets. The standard measure of closeness to Nash equilibrium is exploitability, which measures how much players can benefit from unilaterally changing their strategy. We propose two new methods that minimize an approximation of the exploitability with respect to the strategy profile. The first method uses a learned best-response function, which takes the current strategy profile as input and returns candidate best responses for each player. The strategy profile and best-response functions are trained simultaneously, with the former trying to minimize exploitability while the latter tries to maximize it. The second method maintains an ensemble of candidate best responses for each player. In each iteration, the best-performing elements of each ensemble are used to update the current strategy profile. The strategy profile and best-response ensembles are simultaneously trained to minimize and maximize the approximate exploitability, respectively. We evaluate our methods on various continuous games, showing that they outperform prior methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here