Conditional Generative Modeling for De Novo Hierarchical Multi-Label Functional Protein Design

1 Jan 2021  ·  Tim Kucera, Karsten Michael Borgwardt, Matteo Togninalli, Laetitia Papaxanthos ·

The availability of vast protein sequence information and rich functional annotations thereof has a large potential for protein design applications in biomedicine and synthetic biology. To this date, there exists no method for the general-purpose design of proteins without any prior knowledge about the protein of interest, such as costly and rare structure information or sequence fragments. However, the Gene Ontology (GO) database provides information about the hierarchical organisation of protein functions, and thus could inform generative models about the underlying complex sequence-function relationships, replacing the need for structural data. We therefore propose to use conditional generative adversarial networks (cGANs) on the task of fast \emph{de novo} hierarchical multi-label protein design. We generate valid protein sequences exhibiting a large set of molecular functions extracted from the GO database, using a single model and without any prior information. We shed light on efficient conditioning mechanisms and adapted network architectures thanks to a thorough hyperparameter selection process and analysis. We further provide statistically- and biologically-driven evaluation measures for generative models in the context of protein design to assess the quality of the generated sequences and facilitate progress in the field. We show that our proposed model, ProteoGAN, outperforms several baselines when designing proteins given a functional label and generates well-formed sequences.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here