Connector 0.5: A unified framework for graph representation learning

25 Apr 2023  ·  Thanh Sang Nguyen, Jooho Lee, Van Thuy Hoang, O-Joun Lee ·

Graph representation learning models aim to represent the graph structure and its features into low-dimensional vectors in a latent space, which can benefit various downstream tasks, such as node classification and link prediction. Due to its powerful graph data modelling capabilities, various graph embedding models and libraries have been proposed to learn embeddings and help researchers ease conducting experiments. In this paper, we introduce a novel graph representation framework covering various graph embedding models, ranging from shallow to state-of-the-art models, namely Connector. First, we consider graph generation by constructing various types of graphs with different structural relations, including homogeneous, signed, heterogeneous, and knowledge graphs. Second, we introduce various graph representation learning models, ranging from shallow to deep graph embedding models. Finally, we plan to build an efficient open-source framework that can provide deep graph embedding models to represent structural relations in graphs. The framework is available at https://github.com/NSLab-CUK/Connector.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here