Copula Representations and Error Surface Projections for the Exclusive Or Problem

8 Jul 2019  ·  Roy S. Freedman ·

The exclusive or (xor) function is one of the simplest examples that illustrate why nonlinear feedforward networks are superior to linear regression for machine learning applications. We review the xor representation and approximation problems and discuss their solutions in terms of probabilistic logic and associative copula functions. After briefly reviewing the specification of feedforward networks, we compare the dynamics of learned error surfaces with different activation functions such as RELU and tanh through a set of colorful three-dimensional charts. The copula representations extend xor from Boolean to real values, thereby providing a convenient way to demonstrate the concept of cross-validation on in-sample and out-sample data sets. Our approach is pedagogical and is meant to be a machine learning prolegomenon.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods