Correlated random features for fast semi-supervised learning

This paper presents Correlated Nystrom Views (XNV), a fast semi-supervised algorithm for regression and classification. The algorithm draws on two main ideas. First, it generates two views consisting of computationally inexpensive random features. Second, XNV applies multiview regression using Canonical Correlation Analysis (CCA) on unlabeled data to bias the regression towards useful features. It has been shown that, if the views contains accurate estimators, CCA regression can substantially reduce variance with a minimal increase in bias. Random views are justified by recent theoretical and empirical work showing that regression with random features closely approximates kernel regression, implying that random views can be expected to contain accurate estimators. We show that XNV consistently outperforms a state-of-the-art algorithm for semi-supervised learning: substantially improving predictive performance and reducing the variability of performance on a wide variety of real-world datasets, whilst also reducing runtime by orders of magnitude.

PDF Abstract NeurIPS 2013 PDF NeurIPS 2013 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here