Couple Learning for semi-supervised sound event detection

12 Oct 2021  ·  Rui Tao, Long Yan, Kazushige Ouchi, Xiangdong Wang ·

The recently proposed Mean Teacher method, which exploits large-scale unlabeled data in a self-ensembling manner, has achieved state-of-the-art results in several semi-supervised learning benchmarks. Spurred by current achievements, this paper proposes an effective Couple Learning method that combines a well-trained model and a Mean Teacher model. The suggested pseudo-labels generated model (PLG) increases strongly- and weakly-labeled data to improve the Mean Teacher method-s performance. Moreover, the Mean Teacher-s consistency cost reduces the noise impact in the pseudo-labels introduced by detection errors. The experimental results on Task 4 of the DCASE2020 challenge demonstrate the superiority of the proposed method, achieving about 44.25% F1-score on the public evaluation set, significantly outperforming the baseline system-s 32.39%. At the same time, we also propose a simple and effective experiment called the Variable Order Input (VOI) experiment, which proves the significance of the Couple Learning method. Our developed Couple Learning code is available on GitHub.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here