Cross-Batch Negative Sampling for Training Two-Tower Recommenders

28 Oct 2021  ·  Jinpeng Wang, Jieming Zhu, Xiuqiang He ·

The two-tower architecture has been widely applied for learning item and user representations, which is important for large-scale recommender systems. Many two-tower models are trained using various in-batch negative sampling strategies, where the effects of such strategies inherently rely on the size of mini-batches. However, training two-tower models with a large batch size is inefficient, as it demands a large volume of memory for item and user contents and consumes a lot of time for feature encoding. Interestingly, we find that neural encoders can output relatively stable features for the same input after warming up in the training process. Based on such facts, we propose a simple yet effective sampling strategy called Cross-Batch Negative Sampling (CBNS), which takes advantage of the encoded item embeddings from recent mini-batches to boost the model training. Both theoretical analysis and empirical evaluations demonstrate the effectiveness and the efficiency of CBNS.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here