Cross-Task Knowledge Transfer for Visually-Grounded Navigation

Recent efforts on training visual navigation agents conditioned on language using deep reinforcement learning have been successful in learning policies for two different tasks: learning to follow navigational instructions and embodied question answering. In this paper, we aim to learn a multitask model capable of jointly learning both tasks, and transferring knowledge of words and their grounding in visual objects across tasks... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet