Crowdsourced Classification with XOR Queries: Fundamental Limits and An Efficient Algorithm

31 Jan 2020 Daesung Kim Hye Won Chung

Crowdsourcing systems have emerged as an effective platform to label data and classify objects with relatively low cost by exploiting non-expert workers. To ensure reliable recovery of unknown labels with as few number of queries as possible, we consider an effective query type that asks "group attribute" of a chosen subset of objects... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet