Binary Classification with XOR Queries: Fundamental Limits and An Efficient Algorithm

31 Jan 2020  ·  Daesung Kim, Hye Won Chung ·

We consider a query-based data acquisition problem for binary classification of unknown labels, which has diverse applications in communications, crowdsourcing, recommender systems and active learning. To ensure reliable recovery of unknown labels with as few number of queries as possible, we consider an effective query type that asks "group attribute" of a chosen subset of objects. In particular, we consider the problem of classifying $m$ binary labels with XOR queries that ask whether the number of objects having a given attribute in the chosen subset of size $d$ is even or odd. The subset size $d$, which we call query degree, can be varying over queries. We consider a general noise model where the accuracy of answers on queries changes depending both on the worker (the data provider) and query degree $d$. For this general model, we characterize the information-theoretic limit on the optimal number of queries to reliably recover $m$ labels in terms of a given combination of degree-$d$ queries and noise parameters. Further, we propose an efficient inference algorithm that achieves this limit even when the noise parameters are unknown.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here