Decidable Reasoning About Time in Finite-Domain Situation Calculus Theories

5 Feb 2024  ·  Till Hofmann, Stefan Schupp, Gerhard Lakemeyer ·

Representing time is crucial for cyber-physical systems and has been studied extensively in the Situation Calculus. The most commonly used approach represents time by adding a real-valued fluent $\mathit{time}(a)$ that attaches a time point to each action and consequently to each situation. We show that in this approach, checking whether there is a reachable situation that satisfies a given formula is undecidable, even if the domain of discourse is restricted to a finite set of objects. We present an alternative approach based on well-established results from timed automata theory by introducing clocks as real-valued fluents with restricted successor state axioms and comparison operators. %that only allow comparisons against fixed rationals. With this restriction, we can show that the reachability problem for finite-domain basic action theories is decidable. Finally, we apply our results on Golog program realization by presenting a decidable procedure for determining an action sequence that is a successful execution of a given program.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here