Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted Decision-making

Several strands of research have aimed to bridge the gap between artificial intelligence (AI) and human decision-makers in AI-assisted decision-making, where humans are the consumers of AI model predictions and the ultimate decision-makers in high-stakes applications. However, people's perception and understanding are often distorted by their cognitive biases, such as confirmation bias, anchoring bias, availability bias, to name a few. In this work, we use knowledge from the field of cognitive science to account for cognitive biases in the human-AI collaborative decision-making setting, and mitigate their negative effects on collaborative performance. To this end, we mathematically model cognitive biases and provide a general framework through which researchers and practitioners can understand the interplay between cognitive biases and human-AI accuracy. We then focus specifically on anchoring bias, a bias commonly encountered in human-AI collaboration. We implement a time-based de-anchoring strategy and conduct our first user experiment that validates its effectiveness in human-AI collaborative decision-making. With this result, we design a time allocation strategy for a resource-constrained setting that achieves optimal human-AI collaboration under some assumptions. We, then, conduct a second user experiment which shows that our time allocation strategy with explanation can effectively de-anchor the human and improve collaborative performance when the AI model has low confidence and is incorrect.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here