Deciding of HMM parameters based on number of critical points for gesture recognition from motion capture data

28 Oct 2011 Michał Cholewa Przemysław Głomb

This paper presents a method of choosing number of states of a HMM based on number of critical points of the motion capture data. The choice of Hidden Markov Models(HMM) parameters is crucial for recognizer's performance as it is the first step of the training and cannot be corrected automatically within HMM... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet