Deep Active Learning for Solvability Prediction in Power Systems

27 Jul 2020  ·  Yichen Zhang, Jianzhe Liu, Feng Qiu, Tianqi Hong, Rui Yao ·

Traditional methods for solvability region analysis can only have inner approximations with inconclusive conservatism. Machine learning methods have been proposed to approach the real region. In this letter, we propose a deep active learning framework for power system solvability prediction. Compared with the passive learning methods where the training is performed after all instances are labeled, the active learning selects most informative instances to be label and therefore significantly reduce the size of labeled dataset for training. In the active learning framework, the acquisition functions, which correspond to different sampling strategies, are defined in terms of the on-the-fly posterior probability from the classifier. The IEEE 39-bus system is employed to validate the proposed framework, where a two-dimensional case is illustrated to visualize the effectiveness of the sampling method followed by the full-dimensional numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here