Deep Active Learning with Adaptive Acquisition

27 Jun 2019  ·  Manuel Haussmann, Fred A. Hamprecht, Melih Kandemir ·

Model selection is treated as a standard performance boosting step in many machine learning applications. Once all other properties of a learning problem are fixed, the model is selected by grid search on a held-out validation set. This is strictly inapplicable to active learning. Within the standardized workflow, the acquisition function is chosen among available heuristics a priori, and its success is observed only after the labeling budget is already exhausted. More importantly, none of the earlier studies report a unique consistently successful acquisition heuristic to the extent to stand out as the unique best choice. We present a method to break this vicious circle by defining the acquisition function as a learning predictor and training it by reinforcement feedback collected from each labeling round. As active learning is a scarce data regime, we bootstrap from a well-known heuristic that filters the bulk of data points on which all heuristics would agree, and learn a policy to warp the top portion of this ranking in the most beneficial way for the character of a specific data distribution. Our system consists of a Bayesian neural net, the predictor, a bootstrap acquisition function, a probabilistic state definition, and another Bayesian policy network that can effectively incorporate this input distribution. We observe on three benchmark data sets that our method always manages to either invent a new superior acquisition function or to adapt itself to the a priori unknown best performing heuristic for each specific data set.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here