Deep Convolutional Neural Networks for Action Recognition Using Depth Map Sequences

20 Jan 2015  ·  Pichao Wang, Wanqing Li, Zhimin Gao, Jing Zhang, Chang Tang, Philip Ogunbona ·

Recently, deep learning approach has achieved promising results in various fields of computer vision. In this paper, a new framework called Hierarchical Depth Motion Maps (HDMM) + 3 Channel Deep Convolutional Neural Networks (3ConvNets) is proposed for human action recognition using depth map sequences. Firstly, we rotate the original depth data in 3D pointclouds to mimic the rotation of cameras, so that our algorithms can handle view variant cases. Secondly, in order to effectively extract the body shape and motion information, we generate weighted depth motion maps (DMM) at several temporal scales, referred to as Hierarchical Depth Motion Maps (HDMM). Then, three channels of ConvNets are trained on the HDMMs from three projected orthogonal planes separately. The proposed algorithms are evaluated on MSRAction3D, MSRAction3DExt, UTKinect-Action and MSRDailyActivity3D datasets respectively. We also combine the last three datasets into a larger one (called Combined Dataset) and test the proposed method on it. The results show that our approach can achieve state-of-the-art results on the individual datasets and without dramatical performance degradation on the Combined Dataset.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here