Deep F-measure Maximization for End-to-End Speech Understanding

8 Aug 2020Leda SarıMark Hasegawa-Johnson

Spoken language understanding (SLU) datasets, like many other machine learning datasets, usually suffer from the label imbalance problem. Label imbalance usually causes the learned model to replicate similar biases at the output which raises the issue of unfairness to the minority classes in the dataset... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet