Deep Generative Models for Weakly-Supervised Multi-Label Classification

In order to train learning models for multi-label classification (MLC), it is typically desirable to have a large amount of fully annotated multi-label data. Since such annotation process is in general costly, we focus on the learning task of weakly-supervised multi-label classification (WS-MLC)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet