Deep Graph Clustering via Mutual Information Maximization and Mixture Model

10 May 2022  ·  Maedeh Ahmadi, Mehran Safayani, Abdolreza Mirzaei ·

Attributed graph clustering or community detection which learns to cluster the nodes of a graph is a challenging task in graph analysis. In this paper, we introduce a contrastive learning framework for learning clustering-friendly node embedding. Although graph contrastive learning has shown outstanding performance in self-supervised graph learning, using it for graph clustering is not well explored. We propose Gaussian mixture information maximization (GMIM) which utilizes a mutual information maximization approach for node embedding. Meanwhile, it assumes that the representation space follows a Mixture of Gaussians (MoG) distribution. The clustering part of our objective tries to fit a Gaussian distribution to each community. The node embedding is jointly optimized with the parameters of MoG in a unified framework. Experiments on real-world datasets demonstrate the effectiveness of our method in community detection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods