Deep Learning for Koopman-based Dynamic Movement Primitives

6 Dec 2023  ·  Tyler Han, Carl Glen Henshaw ·

The challenge of teaching robots to perform dexterous manipulation, dynamic locomotion, or whole--body manipulation from a small number of demonstrations is an important research field that has attracted interest from across the robotics community. In this work, we propose a novel approach by joining the theories of Koopman Operators and Dynamic Movement Primitives to Learning from Demonstration. Our approach, named \gls{admd}, projects nonlinear dynamical systems into linear latent spaces such that a solution reproduces the desired complex motion. Use of an autoencoder in our approach enables generalizability and scalability, while the constraint to a linear system attains interpretability. Our results are comparable to the Extended Dynamic Mode Decomposition on the LASA Handwriting dataset but with training on only a small fractions of the letters.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods