Generative Models

AutoEncoder

Introduced by Hinton et al. in Reducing the Dimensionality of Data with Neural Networks

An Autoencoder is a bottleneck architecture that turns a high-dimensional input into a latent low-dimensional code (encoder), and then performs a reconstruction of the input with this latent code (the decoder).

Image: Michael Massi

Source: Reducing the Dimensionality of Data with Neural Networks

Papers


Paper Code Results Date Stars

Tasks


Task Papers Share
Decoder 41 5.97%
Anomaly Detection 34 4.95%
Denoising 28 4.08%
Self-Supervised Learning 24 3.49%
Image Generation 20 2.91%
Dimensionality Reduction 20 2.91%
Semantic Segmentation 14 2.04%
Diversity 14 2.04%
Quantization 13 1.89%

Components


Component Type
🤖 No Components Found You can add them if they exist; e.g. Mask R-CNN uses RoIAlign

Categories