Generative Models

AutoEncoder

Introduced by Hinton et al. in Reducing the Dimensionality of Data with Neural Networks

An Autoencoder is a bottleneck architecture that turns a high-dimensional input into a latent low-dimensional code (encoder), and then performs a reconstruction of the input with this latent code (the decoder).

Image: Michael Massi

Source: Reducing the Dimensionality of Data with Neural Networks

Papers


Paper Code Results Date Stars

Tasks


Task Papers Share
Anomaly Detection 44 6.38%
Denoising 39 5.65%
Self-Supervised Learning 26 3.77%
Image Generation 16 2.32%
Clustering 14 2.03%
Semantic Segmentation 14 2.03%
Disentanglement 14 2.03%
Object Detection 13 1.88%
Image Classification 13 1.88%

Components


Component Type
🤖 No Components Found You can add them if they exist; e.g. Mask R-CNN uses RoIAlign

Categories