Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity

30 Jun 2021  ·  Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, Franck Gabriel ·

The dynamics of Deep Linear Networks (DLNs) is dramatically affected by the variance $\sigma^2$ of the parameters at initialization $\theta_0$. For DLNs of width $w$, we show a phase transition w.r.t. the scaling $\gamma$ of the variance $\sigma^2=w^{-\gamma}$ as $w\to\infty$: for large variance ($\gamma<1$), $\theta_0$ is very close to a global minimum but far from any saddle point, and for small variance ($\gamma>1$), $\theta_0$ is close to a saddle point and far from any global minimum. While the first case corresponds to the well-studied NTK regime, the second case is less understood. This motivates the study of the case $\gamma \to +\infty$, where we conjecture a Saddle-to-Saddle dynamics: throughout training, gradient descent visits the neighborhoods of a sequence of saddles, each corresponding to linear maps of increasing rank, until reaching a sparse global minimum. We support this conjecture with a theorem for the dynamics between the first two saddles, as well as some numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods