Deep Lipschitz networks and Dudley GANs

ICLR 2018 Ehsan AbbasnejadJaven ShiAnton van den Hengel

Generative adversarial networks (GANs) have enjoyed great success, however often suffer instability during training which motivates many attempts to resolve this issue. Theoretical explanation for the cause of instability is provided in Wasserstein GAN (WGAN), and wasserstein distance is proposed to stablize the training... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper