Deep Perceptual Mapping for Thermal to Visible Face Recognition

10 Jul 2015  ·  M. Saquib Sarfraz, Rainer Stiefelhagen ·

Cross modal face matching between the thermal and visible spectrum is a much de- sired capability for night-time surveillance and security applications. Due to a very large modality gap, thermal-to-visible face recognition is one of the most challenging face matching problem... In this paper, we present an approach to bridge this modality gap by a significant margin. Our approach captures the highly non-linear relationship be- tween the two modalities by using a deep neural network. Our model attempts to learn a non-linear mapping from visible to thermal spectrum while preserving the identity in- formation. We show substantive performance improvement on a difficult thermal-visible face dataset. The presented approach improves the state-of-the-art by more than 10% in terms of Rank-1 identification and bridge the drop in performance due to the modality gap by more than 40%. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here