DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities

15 Dec 2021  ·  Shuo Sun, Wanqi Xue, Rundong Wang, Xu He, Junlei Zhu, Jian Li, Bo An ·

Reinforcement learning (RL) techniques have shown great success in many challenging quantitative trading tasks, such as portfolio management and algorithmic trading. Especially, intraday trading is one of the most profitable and risky tasks because of the intraday behaviors of the financial market that reflect billions of rapidly fluctuating capitals. However, a vast majority of existing RL methods focus on the relatively low frequency trading scenarios (e.g., day-level) and fail to capture the fleeting intraday investment opportunities due to two major challenges: 1) how to effectively train profitable RL agents for intraday investment decision-making, which involves high-dimensional fine-grained action space; 2) how to learn meaningful multi-modality market representation to understand the intraday behaviors of the financial market at tick-level. Motivated by the efficient workflow of professional human intraday traders, we propose DeepScalper, a deep reinforcement learning framework for intraday trading to tackle the above challenges. Specifically, DeepScalper includes four components: 1) a dueling Q-network with action branching to deal with the large action space of intraday trading for efficient RL optimization; 2) a novel reward function with a hindsight bonus to encourage RL agents making trading decisions with a long-term horizon of the entire trading day; 3) an encoder-decoder architecture to learn multi-modality temporal market embedding, which incorporates both macro-level and micro-level market information; 4) a risk-aware auxiliary task to maintain a striking balance between maximizing profit and minimizing risk. Through extensive experiments on real-world market data spanning over three years on six financial futures, we demonstrate that DeepScalper significantly outperforms many state-of-the-art baselines in terms of four financial criteria.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here