Demonstration-Efficient Guided Policy Search via Imitation of Robust Tube MPC

21 Sep 2021  ·  Andrea Tagliabue, Dong-Ki Kim, Michael Everett, Jonathan P. How ·

We propose a demonstration-efficient strategy to compress a computationally expensive Model Predictive Controller (MPC) into a more computationally efficient representation based on a deep neural network and Imitation Learning (IL). By generating a Robust Tube variant (RTMPC) of the MPC and leveraging properties from the tube, we introduce a data augmentation method that enables high demonstration-efficiency, being capable to compensate the distribution shifts typically encountered in IL. Our approach opens the possibility of zero-shot transfer from a single demonstration collected in a nominal domain, such as a simulation or a robot in a lab/controlled environment, to a domain with bounded model errors/perturbations. Numerical and experimental evaluations performed on a trajectory tracking MPC for a quadrotor show that our method outperforms strategies commonly employed in IL, such as DAgger and Domain Randomization, in terms of demonstration-efficiency and robustness to perturbations unseen during training.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here