Design Identification of Curve Patterns on Cultural Heritage Objects: Combining Template Matching and CNN-based Re-Ranking

17 May 2018  ·  Jun Zhou, Yuhang Lu, Kang Zheng, Karen Smith, Colin Wilder, Song Wang ·

The surfaces of many cultural heritage objects were embellished with various patterns, especially curve patterns. In practice, most of the unearthed cultural heritage objects are highly fragmented, e.g., sherds of potteries or vessels, and each of them only shows a very small portion of the underlying full design, with noise and deformations. The goal of this paper is to address the challenging problem of automatically identifying the underlying full design of curve patterns from such a sherd. Specifically, we formulate this problem as template matching: curve structure segmented from the sherd is matched to each location with each possible orientation of each known full design. In this paper, we propose a new two-stage matching algorithm, with a different matching cost in each stage. In Stage 1, we use a traditional template matching, which is highly computationally efficient, over the whole search space and identify a small set of candidate matchings. In Stage 2, we derive a new matching cost by training a dual-source Convolutional Neural Network (CNN) and apply it to re-rank the candidate matchings identified in Stage 1. We collect 600 pottery sherds with 98 full designs from the Woodland Period in Southeastern North America for experiments and the performance of the proposed algorithm is very competitive.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here