Designing A Composite Dictionary Adaptively From Joint Examples

12 Mar 2015  ·  Zhangyang Wang, Yingzhen Yang, Jianchao Yang, Thomas S. Huang ·

We study the complementary behaviors of external and internal examples in image restoration, and are motivated to formulate a composite dictionary design framework. The composite dictionary consists of the global part learned from external examples, and the sample-specific part learned from internal examples. The dictionary atoms in both parts are further adaptively weighted to emphasize their model statistics. Experiments demonstrate that the joint utilization of external and internal examples leads to substantial improvements, with successful applications in image denoising and super resolution.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here