Detailed Surface Geometry and Albedo Recovery from RGB-D Video Under Natural Illumination

ICCV 2017  ·  Xinxin Zuo, Sen Wang, Jiangbin Zheng, Ruigang Yang ·

In this paper we present a novel approach for depth map enhancement from an RGB-D video sequence. The basic idea is to exploit the shading information in the color image. Instead of making assumption about surface albedo or controlled object motion and lighting, we use the lighting variations introduced by casual object movement. We are effectively calculating photometric stereo from a moving object under natural illuminations. The key technical challenge is to establish correspondences over the entire image set. We therefore develop a lighting insensitive robust pixel matching technique that out-performs optical flow method in presence of lighting variations. In addition we present an expectation-maximization framework to recover the surface normal and albedo simultaneously, without any regularization term. We have validated our method on both synthetic and real datasets to show its superior performance on both surface details recovery and intrinsic decomposition.

PDF Abstract ICCV 2017 PDF ICCV 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here