We give a new approach to the dictionary learning (also known as "sparse coding") problem of recovering an unknown $n\times m$ matrix $A$ (for $m \geq n$) from examples of the form \[ y = Ax + e, \] where $x$ is a random vector in $\mathbb R^m$ with at most $\tau m$ nonzero coordinates, and $e$ is a random noise vector in $\mathbb R^n$ with bounded magnitude. For the case $m=O(n)$, our algorithm recovers every column of $A$ within arbitrarily good constant accuracy in time $m^{O(\log m/\log(\tau^{-1}))}$, in particular achieving polynomial time if $\tau = m^{-\delta}$ for any $\delta>0$, and time $m^{O(\log m)}$ if $\tau$ is (a sufficiently small) constant... (read more)

PDF
Add Datasets
introduced or used in this paper

Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |