Difference-Seeking Generative Adversarial Network

We propose a novel algorithm, Difference-Seeking Generative Adversarial Network (DSGAN), developed from traditional GAN. DSGAN considers the scenario that the training samples of target distribution, $p_{t}$, are difficult to collect. Suppose there are two distributions $p_{\bar{d}}$ and $p_{d}$ such that the density of the target distribution can be the differences between the densities of $p_{\bar{d}}$ and $p_{d}$. We show how to learn the target distribution $p_{t}$ only via samples from $p_{d}$ and $p_{\bar{d}}$ (relatively easy to obtain). DSGAN has the flexibility to produce samples from various target distributions (e.g. the out-of-distribution). Two key applications, semi-supervised learning and adversarial training, are taken as examples to validate the effectiveness of DSGAN. We also provide theoretical analyses about the convergence of DSGAN.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.