Differentially-Private Hierarchical Federated Learning

21 Jan 2024  ·  Frank Po-Chen Lin, Christopher Brinton ·

While federated learning (FL) eliminates the transmission of raw data over a network, it is still vulnerable to privacy breaches from the communicated model parameters. In this work, we propose \underline{H}ierarchical \underline{F}ederated Learning with \underline{H}ierarchical \underline{D}ifferential \underline{P}rivacy ({\tt H$^2$FDP}), a DP-enhanced FL methodology for jointly optimizing privacy and performance in hierarchical networks. Building upon recent proposals for Hierarchical Differential Privacy (HDP), one of the key concepts of {\tt H$^2$FDP} is adapting DP noise injection at different layers of an established FL hierarchy -- edge devices, edge servers, and cloud servers -- according to the trust models within particular subnetworks. We conduct a comprehensive analysis of the convergence behavior of {\tt H$^2$FDP}, revealing conditions on parameter tuning under which the training process converges sublinearly to a finite stationarity gap that depends on the network hierarchy, trust model, and target privacy level. Leveraging these relationships, we develop an adaptive control algorithm for {\tt H$^2$FDP} that tunes properties of local model training to minimize communication energy, latency, and the stationarity gap while striving to maintain a sub-linear convergence rate and meet desired privacy criteria. Subsequent numerical evaluations demonstrate that {\tt H$^2$FDP} obtains substantial improvements in these metrics over baselines for different privacy budgets, and validate the impact of different system configurations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods