Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance

24 Sep 2019  ·  Shibo Zhou, Xiaohua LI, Ying Chen, Sanjeev T. Chandrasekaran, Arindam Sanyal ·

Spiking neural network (SNN) is interesting both theoretically and practically because of its strong bio-inspiration nature and potentially outstanding energy efficiency. Unfortunately, its development has fallen far behind the conventional deep neural network (DNN), mainly because of difficult training and lack of widely accepted hardware experiment platforms. In this paper, we show that a deep temporal-coded SNN can be trained easily and directly over the benchmark datasets CIFAR10 and ImageNet, with testing accuracy within 1% of the DNN of equivalent size and architecture. Training becomes similar to DNN thanks to the closed-form solution to the spiking waveform dynamics. Considering that SNNs should be implemented in practical neuromorphic hardwares, we train the deep SNN with weights quantized to 8, 4, 2 bits and with weights perturbed by random noise to demonstrate its robustness in practical applications. In addition, we develop a phase-domain signal processing circuit schematic to implement our spiking neuron with 90% gain of energy efficiency over existing work. This paper demonstrates that the temporal-coded deep SNN is feasible for applications with high performance and high energy efficient.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here