Discovery of Predictive Representations With a Network of General Value Functions

The ability of an agent to {\em discover} its own learning objectives has long been considered a key ingredient for artificial general intelligence. Breakthroughs in autonomous decision making and reinforcement learning have primarily been in domains where the agent's goal is outlined and clear: such as playing a game to win, or driving safely. Several studies have demonstrated that learning extramural sub-tasks and auxiliary predictions can improve (1) single human-specified task learning, (2) transfer of learning, (3) and the agent's learned representation of the world. In all these examples, the agent was instructed what to learn about. We investigate a framework for discovery: curating a large collection of predictions, which are used to construct the agent's representation of the world. Specifically, our system maintains a large collection of predictions, continually pruning and replacing predictions. We highlight the importance of considering stability rather than convergence for such a system, and develop an adaptive, regularized algorithm towards that aim. We provide several experiments in computational micro-worlds demonstrating that this simple approach can be effective for discovering useful predictions autonomously.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods