Does the Adam Optimizer Exacerbate Catastrophic Forgetting?

15 Feb 2021  ·  Dylan R. Ashley, Sina Ghiassian, Richard S. Sutton ·

Catastrophic forgetting remains a severe hindrance to the broad application of artificial neural networks (ANNs), however, it continues to be a poorly understood phenomenon. Despite the extensive amount of work on catastrophic forgetting, we argue that it is still unclear how exactly the phenomenon should be quantified, and, moreover, to what degree all of the choices we make when designing learning systems affect the amount of catastrophic forgetting. We use various testbeds from the reinforcement learning and supervised learning literature to (1) provide evidence that the choice of which modern gradient-based optimization algorithm is used to train an ANN has a significant impact on the amount of catastrophic forgetting and show that-surprisingly-in many instances classical algorithms such as vanilla SGD experience less catastrophic forgetting than the more modern algorithms such as Adam. We empirically compare four different existing metrics for quantifying catastrophic forgetting and (2) show that the degree to which the learning systems experience catastrophic forgetting is sufficiently sensitive to the metric used that a change from one principled metric to another is enough to change the conclusions of a study dramatically. Our results suggest that a much more rigorous experimental methodology is required when looking at catastrophic forgetting. Based on our results, we recommend inter-task forgetting in supervised learning must be measured with both retention and relearning metrics concurrently, and intra-task forgetting in reinforcement learning must-at the very least-be measured with pairwise interference.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods