DPS-Net: Deep Polarimetric Stereo Depth Estimation

Stereo depth estimation usually struggles to deal with textureless scenes for both traditional and learning-based methods due to the inherent dependence on image correspondence matching. In this paper, we propose a novel neural network, i.e., DPS-Net, to exploit both the prior geometric knowledge and polarimetric information for depth estimation with two polarimetric stereo images. Specifically, we construct both RGB and polarization correlation volumes to fully leverage the multi-domain similarity between polarimetric stereo images. Since inherent ambiguities exist in the polarization images, we introduce the iso-depth cost explicitly into the network to solve these ambiguities. Moreover, we design a cascaded dual-GRU architecture to recurrently update the disparity and effectively fuse both the multi-domain correlation features and the iso-depth cost. Besides, we present new synthetic and real polarimetric stereo datasets for evaluation. Experimental results demonstrate that our method outperforms the state-of-the-art stereo depth estimation methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here