DRKF: Distilled Rotated Kernel Fusion for Efficient Rotation Invariant Descriptors in Local Feature Matching

22 Sep 2022  ·  Ranran Huang, Jiancheng Cai, Chao Li, Zhuoyuan Wu, Xinmin Liu, Zhenhua Chai ·

The performance of local feature descriptors degrades in the presence of large rotation variations. To address this issue, we present an efficient approach to learning rotation invariant descriptors. Specifically, we propose Rotated Kernel Fusion (RKF) which imposes rotations on the convolution kernel to improve the inherent nature of CNN. Since RKF can be processed by the subsequent re-parameterization, no extra computational costs will be introduced in the inference stage. Moreover, we present Multi-oriented Feature Aggregation (MOFA) which aggregates features extracted from multiple rotated versions of the input image and can provide auxiliary knowledge for the training of RKF by leveraging the distillation strategy. We refer to the distilled RKF model as DRKF. Besides the evaluation on a rotation-augmented version of the public dataset HPatches, we also contribute a new dataset named DiverseBEV which is collected during the drone's flight and consists of bird's eye view images with large viewpoint changes and camera rotations. Extensive experiments show that our method can outperform other state-of-the-art techniques when exposed to large rotation variations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods