DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image Restoration

15 Jul 2023  ·  Yuanshuo Cheng, Mingwen Shao, Yecong Wan, Chao Wang ·

Existing All-In-One image restoration (IR) methods usually lack flexible modeling on various types of degradation, thus impeding the restoration performance. To achieve All-In-One IR with higher task dexterity, this work proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR), which consists of task-adaptive degradation modeling and model-based image restoring. Specifically, these two subtasks are formalized as a pair of entangled reference-based maximum a posteriori (MAP) inferences, which are optimized synchronously in an unfolding-based manner. With the two cascaded subtasks, DRM-IR first dynamically models the task-specific degradation based on a reference image pair and further restores the image with the collected degradation statistics. Besides, to bridge the semantic gap between the reference and target degraded images, we further devise a Degradation Prior Transmitter (DPT) that restrains the instance-specific feature differences. DRM-IR explicitly provides superior flexibility for All-in-One IR while being interpretable. Extensive experiments on multiple benchmark datasets show that our DRM-IR achieves state-of-the-art in All-In-One IR.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here