Dynamic Exploration-Exploitation Trade-Off in Active Learning Regression with Bayesian Hierarchical Modeling

16 Apr 2023  ·  Upala Junaida Islam, Kamran Paynabar, George Runger, Ashif Sikandar Iquebal ·

Active learning provides a framework to adaptively query the most informative experiments towards learning an unknown black-box function. Various approaches of active learning have been proposed in the literature, however, they either focus on exploration or exploitation in the design space. Methods that do consider exploration-exploitation simultaneously employ fixed or ad-hoc measures to control the trade-off that may not be optimal. In this paper, we develop a Bayesian hierarchical approach, referred as BHEEM, to dynamically balance the exploration-exploitation trade-off as more data points are queried. To sample from the posterior distribution of the trade-off parameter, We subsequently formulate an approximate Bayesian computation approach based on the linear dependence of queried data in the feature space. Simulated and real-world examples show the proposed approach achieves at least 21% and 11% average improvement when compared to pure exploration and exploitation strategies respectively. More importantly, we note that by optimally balancing the trade-off between exploration and exploitation, BHEEM performs better or at least as well as either pure exploration or pure exploitation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here