Dynamic Privacy For Distributed Machine Learning Over Network

14 Jan 2016  ·  Tao Zhang, Quanyan Zhu ·

Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternating direction method of multipliers (ADMM), and propose the methods of dual variable perturbation and primal variable perturbation to provide dynamic differential privacy. The two mechanisms lead to algorithms that can provide privacy guarantees under mild conditions of the convexity and differentiability of the loss function and the regularizer. We study the performance of the algorithms, and show that the dual variable perturbation outperforms its primal counterpart. To design an optimal privacy mechanisms, we analyze the fundamental tradeoff between privacy and accuracy, and provide guidelines to choose privacy parameters. Numerical experiments using customer information database are performed to corroborate the results on privacy and utility tradeoffs and design.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here