Dynamic Tensor Rematerialization

Checkpointing enables the training of deep learning models under restricted memory budgets by freeing intermediate activations from memory and recomputing them on demand. Current checkpointing techniques statically plan these recomputations offline and assume static computation graphs... We demonstrate that a simple online algorithm can achieve comparable performance by introducing Dynamic Tensor Rematerialization (DTR), a greedy online algorithm for checkpointing that is extensible and general, is parameterized by eviction policy, and supports dynamic models. We prove that DTR can train an $N$-layer linear feedforward network on an $\Omega(\sqrt{N})$ memory budget with only $\mathcal{O}(N)$ tensor operations. DTR closely matches the performance of optimal static checkpointing in simulated experiments. We incorporate a DTR prototype into PyTorch merely by interposing on tensor allocations and operator calls and collecting lightweight metadata on tensors. read more

PDF Abstract ICLR 2021 PDF ICLR 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods