DynaMiTe: A Dynamic Local Motion Model with Temporal Constraints for Robust Real-Time Feature Matching

31 Jul 2020  ·  Patrick Ruhkamp, Ruiqi Gong, Nassir Navab, Benjamin Busam ·

Feature based visual odometry and SLAM methods require accurate and fast correspondence matching between consecutive image frames for precise camera pose estimation in real-time. Current feature matching pipelines either rely solely on the descriptive capabilities of the feature extractor or need computationally complex optimization schemes. We present the lightweight pipeline DynaMiTe, which is agnostic to the descriptor input and leverages spatial-temporal cues with efficient statistical measures. The theoretical backbone of the method lies within a probabilistic formulation of feature matching and the respective study of physically motivated constraints. A dynamically adaptable local motion model encapsulates groups of features in an efficient data structure. Temporal constraints transfer information of the local motion model across time, thus additionally reducing the search space complexity for matching. DynaMiTe achieves superior results both in terms of matching accuracy and camera pose estimation with high frame rates, outperforming state-of-the-art matching methods while being computationally more efficient.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here