DynaNewton - Accelerating Newton's Method for Machine Learning

20 May 2016  ·  Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann ·

Newton's method is a fundamental technique in optimization with quadratic convergence within a neighborhood around the optimum. However reaching this neighborhood is often slow and dominates the computational costs. We exploit two properties specific to empirical risk minimization problems to accelerate Newton's method, namely, subsampling training data and increasing strong convexity through regularization. We propose a novel continuation method, where we define a family of objectives over increasing sample sizes and with decreasing regularization strength. Solutions on this path are tracked such that the minimizer of the previous objective is guaranteed to be within the quadratic convergence region of the next objective to be optimized. Thereby every Newton iteration is guaranteed to achieve super-linear contractions with regard to the chosen objective, which becomes a moving target. We provide a theoretical analysis that motivates our algorithm, called DynaNewton, and characterizes its speed of convergence. Experiments on a wide range of data sets and problems consistently confirm the predicted computational savings.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.