Efficient Counterfactual Learning from Bandit Feedback

10 Sep 2018Yusuke NaritaShota YasuiKohei Yata

What is the most statistically efficient way to do off-policy evaluation and optimization with batch data from bandit feedback? For log data generated by contextual bandit algorithms, we consider offline estimators for the expected reward from a counterfactual policy... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.