Efficient Low-Latency Dynamic Licensing for Deep Neural Network Deployment on Edge Devices

24 Feb 2021  ·  Toan Pham Van, Ngoc N. Tran, Hoang Pham Minh, Tam Nguyen Minh anh Thanh Ta Minh ·

Along with the rapid development in the field of artificial intelligence, especially deep learning, deep neural network applications are becoming more and more popular in reality. To be able to withstand the heavy load from mainstream users, deployment techniques are essential in bringing neural network models from research to production. Among the two popular computing topologies for deploying neural network models in production are cloud-computing and edge-computing. Recent advances in communication technologies, along with the great increase in the number of mobile devices, has made edge-computing gradually become an inevitable trend. In this paper, we propose an architecture to solve deploying and processing deep neural networks on edge-devices by leveraging their synergy with the cloud and the access-control mechanisms of the database. Adopting this architecture allows low-latency DNN model updates on devices. At the same time, with only one model deployed, we can easily make different versions of it by setting access permissions on the model weights. This method allows for dynamic model licensing, which benefits commercial applications.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here