Efficient Nonmyopic Active Search

Active search is an active learning setting with the goal of identifying as many members of a given class as possible under a labeling budget. In this work, we first establish a theoretical hardness of active search, proving that no polynomial-time policy can achieve a constant factor approximation ratio with respect to the expected utility of the optimal policy... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet