Emulation of cosmological mass maps with conditional generative adversarial networks

17 Apr 2020  ·  Nathanaël Perraudin, Sandro Marcon, Aurelien Lucchi, Tomasz Kacprzak ·

Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the universe and our ability to constrain cosmological models. The prediction of these mass maps is based on expensive N-body simulations, which can create a computational bottleneck for cosmological analyses. Modern deep generative models, such as Generative Adversarial Networks (GAN), have demonstrated their potential to achieve this goal. Most existing GAN approaches produce simulations for a fixed value of the cosmological parameters, which limits their practical applicability. We propose a novel conditional GAN model that is able to generate mass maps for any pair of matter density $\Omega_m$ and matter clustering strength $\sigma_8$, parameters which have the largest impact on the evolution of structures in the universe. Our results show that our conditional GAN can interpolate efficiently within the space of simulated cosmologies, and generate maps anywhere inside this space with good visual quality high statistical accuracy. We perform an extensive quantitative comparison of the N-body and GAN -generated maps using a range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity Index (MS-SSIM) and our equivalent of the Fr\'echet Inception Distance (FID). We find a very good agreement on these metrics, with typical differences are <5% at the centre of the simulation grid, and slightly worse for cosmologies at the grid edges. The agreement for the bispectrum is slightly worse, on the <20% level. This contribution is a step towards building emulators of mass maps directly, capturing both the cosmological signal and its variability. We make the code and the data publicly available: https://renkulab.io/gitlab/nathanael.perraudin/darkmattergan

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods