End-to-End Learning of Communications Systems Without a Channel Model

6 Apr 2018  ·  Fayçal Ait Aoudia, Jakob Hoydis ·

The idea of end-to-end learning of communications systems through neural network -based autoencoders has the shortcoming that it requires a differentiable channel model. We present in this paper a novel learning algorithm which alleviates this problem. The algorithm iterates between supervised training of the receiver and reinforcement learning -based training of the transmitter. We demonstrate that this approach works as well as fully supervised methods on additive white Gaussian noise (AWGN) and Rayleigh block-fading (RBF) channels. Surprisingly, while our method converges slower on AWGN channels than supervised training, it converges faster on RBF channels. Our results are a first step towards learning of communications systems over any type of channel without prior assumptions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here