Energy Trees: Regression and Classification With Structured and Mixed-Type Covariates

10 Jul 2022  ·  Riccardo Giubilei, Tullia Padellini, Pierpaolo Brutti ·

The increasing complexity of data requires methods and models that can effectively handle intricate structures, as simplifying them would result in loss of information. While several analytical tools have been developed to work with complex data objects in their original form, these tools are typically limited to single-type variables. In this work, we propose energy trees as a regression and classification model capable of accommodating structured covariates of various types. Energy trees leverage energy statistics to extend the capabilities of conditional inference trees, from which they inherit sound statistical foundations, interpretability, scale invariance, and freedom from distributional assumptions. We specifically focus on functional and graph-structured covariates, while also highlighting the model's flexibility in integrating other variable types. Extensive simulation studies demonstrate the model's competitive performance in terms of variable selection and robustness to overfitting. Finally, we assess the model's predictive ability through two empirical analyses involving human biological data. Energy trees are implemented in the R package etree.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here