Entropic Causal Inference for Neurological Applications

The ultimate goal of cognitive neuroscience is to understand the mechanistic neural processes underlying the functional organization of the brain. Key to this study is understanding structure of both the structural and functional connectivity between anatomical regions. In this paper we follow previous work in developing a simple dynamical model of the brain by simulating its various regions as Kuramoto oscillators whose coupling structure is described by a complex network. However in our simulations rather than generating synthetic networks, we simulate our synthetic model but coupled by a real network of the anatomical brain regions which has been reconstructed from diffusion tensor imaging (DTI) data. By using an information theoretic approach that defines direct information flow in terms of causation entropy (CSE), we show that we can more accurately recover the true structural network than either of the popular correlation or LASSO regression techniques. We demonstrate the effectiveness of our method when applied to data simulated on the realistic DTI network, as well as on randomly generated small-world and Erd\"os-R\'enyi (ER) networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods