Exact Sampling of Determinantal Point Processes without Eigendecomposition

23 Feb 2018  ·  Claire Launay, Bruno Galerne, Agnès Desolneux ·

Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel $K$ that can be seen as a matrix storing the similarity between points. The diversity comes from the fact that the inclusion probability of a subset is equal to the determinant of a submatrice of $K$. The exact algorithm to sample DPPs uses the spectral decomposition of $K$, a computation that becomes costly when dealing with a high number of points. Here, we present an alternative exact algorithm in the discrete setting that avoids the eigenvalues and the eigenvectors computation. Instead, it relies on Cholesky decompositions. This is a two steps strategy: first, it samples a Bernoulli point process with an appropriate distribution, then it samples the target DPP distribution through a thinning procedure. Not only is the method used here innovative, but this algorithm can be competitive with the original algorithm or even faster for some applications specified here.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here